TD 3 – EQUATIONS DIFFERENTIELLES

I – Résoudre l'équation différentielle : $\frac{d^2y}{dx^2} + c^2y = \sin x$;

Dans le cas particulier où c=1, donner l'allure du graphe de la solution particulière la plus simple de l'équation.

II – On considère l'équation différentielle $a^2 \frac{d^2 X}{dx^2} + b \frac{dX}{dx} - \lambda X = 0$ avec X = X(x) et a et b

sont des constantes positives et λ un paramètre réel. Montrer qu'il existe une infinité de solutions $X_0(x)$, $X_1(x)$, ... $X_n(x)$... définies à un facteur multiplicatif près, et qui satisfont aux conditions aux limites X(0) = 0 et $(dX / dx)_{x=1} = 0$ (1 > 0) et qui correspondent à des valeurs du paramètre $\lambda_0 > \lambda_1 > ... > \lambda_n$...

Indication : On posera $\Delta = b^2 + 4\lambda a^2$, $k = 2a^2/(bl) > 0$ ainsi que $\Delta/(4a^4) = -(\omega/l)^2$ si $\Delta < 0$ et $\Delta/(4a^4) = (\Omega/l)^2$ si $\Delta > 0$ (ω et $\Omega > 0$), et on exprimera $X_n(x)$ en fonction de ω_n .

III – Intégrer les équations différentielles :

1.
$$(1+x^2)y'(x) - xy(x) = 1$$
,

2.
$$xy'(x) - y(x) = 2x$$
,

3.
$$y''(x) - 4y'(x) + 4y(x) = \sin x$$
,

4.
$$y''(x) + y(x) = \frac{1}{\cos x}$$
.